The Crystal and Molecular Structure of 6-Deoxy-6-azidodihydroisomorphine, $\mathrm{C}_{17} \mathbf{H}_{\mathbf{2 0}} \mathrm{N}_{\mathbf{4}} \mathrm{O}_{\mathbf{2}}$

By K. Sasvári
Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest, Hungary

K.SImON
Chinoin Factory for Pharmaceutical and Chemical Products, Budapest, Hungary

and R. Bognár and S. Makleit
Institute of Organic Chemistry, L. Kossuth University, Debrecen, Hungary

(Received 6 September 1973; accepted 5 November 1973)

Abstract

6-Deoxy-6-azidodihydroisomorphine (azidomorphine) crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with 4 molecules in a unit cell of dimensions $a=8 \cdot 230, b=13 \cdot 605$ and $c=14 \cdot 142 \AA$. The phase problem was solved by direct methods and the final atomic parameters were obtained by three-dimensional least-squares refinement. The final conventional R is 0.044 for the observed reflexions. The molecule is T-shaped like the codeine and morphine molecules with the difference that in the title molecule the carbocyclic C ring has become saturated and has changed from a boat to a chair form, considerably flattened and distorted relative to the piperidine D ring. In the spatial packing the molecules, linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, form endless linear chains parallel to the b crystal axis.

Introduction

6-Deoxy-6-azidodihydroisomorphine (6β-azido-4,5 α -epoxy-3-hydroxy-17-methyl-morphinane) (azidomorphine) was prepared from dihydromorphine through 3-O-acetyl-6-O-tosyldihydromorphine with NaN_{3} in DMF under conditions suitable for $S_{N} 2$ reactions (Bognár, Makleit \& Mile, 1969). Considering the advantageous pharmacological activity (Knoll, Fürst \& Kelemen, 1971) of this new morphine derivative, it was of interest to determine the crystal structure which gives the conformation of the whole molecule, from which the steric position of the azido group as well as the conformation of the C ring could be determined.

Experimental

The crystals used for X-ray diffraction had been crystallized from a solution in ether. The colourless transparent crystals had a hexagonal prismatic shape with well developed planes and edges, elongated in the direction of the b axis. The samples used had an average thickness of 0.3 mm and a length of about 0.8 mm .

The cell dimensions were determined from Buerger precession photographs taken about the crystallographic axes with $\mathrm{Cu} K \alpha(\mathrm{Ni})$ radiation. The crystallographic data are as follows:

$$
\begin{array}{ll}
a=8.230(2) \AA & D_{m}=1.297 \mathrm{~g} \mathrm{~cm}^{-3} \\
\mathrm{~b}=13.605(6) & D_{x}=1.311 \mathrm{~g} \mathrm{~cm}^{-3} \\
c=14.142(4) & \text { M.W. } 312.379 \tag{0}\\
V=153.47 \AA^{3} & Z=4 \\
F(000)=640 & \mu(\mathrm{Cu} K \alpha)=7.21 \mathrm{~cm}
\end{array}
$$

The space group $P 2_{1} 2_{1} 2_{1}$ was determined from the systematic absences $h 00,0 k 0$ and $00 l$ when h, k and l respectively are odd. The intensities of 1377 independent reflexions were measured by the equi-inclination procedure on the semi-automatic two circle Stoe-Güttinger single-crystal diffractometer. After setting the crystal and counter at the equi-inclination position of a reciprocal layer, all intensities of the corresponding two-dimensional reciprocal layer were measured automatically in the region of 2θ rotation between 5° and 136°. The positioning of the counter and crystal as well as the counting intensity of the reflexion peak and background were controlled by the Güttinger electronics according to a data set previously computed and stored on punched paper tape. Intensities of all reflexions were measured in the fixed counter position $2 \theta^{\prime}$ referred to the corresponding reciprocal lattice point. The counts for the reflexion peaks were recorded in an interval of $2 \cdot 5^{\circ}$ with a scanning speed of $1^{\circ} \mathrm{min}^{-1}$. 60 s background counting was carried out at each end of the peak scan. After finishing the recording of a layer several reflexions of medium intensity were remeasured to control the stability of the intensity measurement. The deviations were always less than 5%, despite the fact that after a few days a slight decomposition of the crystal could be observed.

The integrated intensity was calculated according to the expression

$$
\begin{equation*}
I=I_{2}-\frac{T_{2}}{T_{1}+T_{3}}\left(I_{1}+I_{3}\right) \tag{1}
\end{equation*}
$$

where I_{2} and T_{2} are the total counts and counting time, respectively, for the reflexion peak. The other symbols
in the expression refer to the two background measurements. The standard deviation of the intensity is expressed by

$$
\begin{equation*}
\sigma(I)=\left[I_{2}+\left(\frac{T_{2}}{T_{1}+T_{3}}\right)^{2}\left(I_{1}+I_{3}\right)\right]^{1 / 2} \tag{2}
\end{equation*}
$$

Reflexions with $I<2 \sigma(I)$ were taken as unobserved. With this restriction 159 reflexions out of the total of 1377 were designated unobserved. The size of the crystal satisfied the condition $\mu R<0.3$ and no absorption correction was made.

After the Lorentz-polarization correction was applied, the absolute scale and approximate isotropic temperature factor $B=3.65 \AA^{2}$ were determined by a Wilson plot.

Determination of the structure

The phase problem was solved by direct methods using E values computed from the observed structure factor values in the conventional way. The MULTAN program of Main, Woolfson \& Germain was used, with local modifications, on the ICL-1903A computer for the phase determination. In addition to the three origin-determining reflexions, two starting and one enantiomorph-defining reflexions were used. Starting with E values of 196 reflexions ($E \geq 1 \cdot 40$), taking 1200 as the maximum number of phase relationships, and using as a criterion of sign acceptance a probability greater than 0.80 , the program produced 8 sets of phases as possible solutions, of which two had high ABSFOM values. For these two sets of phases the relevant figures of merit are as follows:

Set	ABSFOM	RESID
1	1.2148	35.54
2	1.1842	29.68

From our experience the correct solution can be expected from the first set with the higher ABSFOM. From the E-map calculation, however, it turned out that the correct solution was the second set with the smaller RESID.

The E map, calculated with the second set of phases, revealed all non-hydrogen atoms of the molecule, giving a structure-factor agreement of $R=19.7 \%$ for the observed reflexions. Starting with the E-map coordinates the structure was refined in the isotropic mode by full matrix least-squares calculations and then in the anisotropic mode by block-diagonal least-squares with the program of Albano, Domenicano \& Vaciago (1966). The program minimizes the function $\Phi=$ $\sum w_{h}\left[F_{\text {oh }}-(1 / G)\left|F_{c h}\right|\right]^{2}$ were G is the scaling factor. The weighting factor of Cruickshank (1961a) $\left[w_{h}=1 /(a+\right.$ $\left.\left.b F+c F^{2}\right)\right]$ was used with $a=5 \cdot 0, b=1.0$ and $c=0.02$. For refinement, only the observed reflexions were used. After 3 cycles of isotropic and 3 cycles of anisotropic refinement the reliability index for the observed reflexions decreased to 7.8%. Introducing all the H atoms, obtained from the difference Fourier function, and calculating a further two cycles of refinement in the anisotropic mode for non-hydrogen and the isotropic mode for the hydrogen atoms reduced the final struc-ture-factor agreement values to $R=0.044$ and $R=$ 0.051 for the observed reflexions and for all the reflexions, respectively. The final atomic parameters and their standard deviations are listed in Tables 1 and 2. The

Table 1. Final fractional coordinates $\left(\times 10^{4}\right)$ and anisotropic thermal parameters $\left(\times 10^{4}\right)$ for the non-hydrogen atoms
The estimated standard deviations are in parentheses. The $b_{1 J}$ are defined by:

	$T=\exp \left[-\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+b_{12} h k+b_{13} h l+b_{23} k l\right)\right.$.								
	x	y	z	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
C(1)	4253 (5)	1957 (3)	2038 (3)	107 (5)	44 (3)	54 (2)	-9 (7)	-13(6)	21 (4)
C(2)	4215 (5)	1066 (3)	2504 (3)	101 (5)	54 (3)	65 (2)	23 (7)	-4 (6)	-32 (4)
C(3)	2892 (5)	777 (3)	3055 (3)	130 (6)	35 (3)	49 (2)	3 (7)	-33 (6)	-8(4)
C(4)	1598 (5)	1414 (3)	3081 (3)	101 (5)	43 (3)	43 (2)	-9 (6)	-4 (5)	0 (4)
C(5)	-404 (4)	2352 (3)	3709 (3)	101 (5)	46 (3)	51 (2)	-20 (6)	9 (6)	3 (4)
C(6)	432 (5)	2833 (4)	4555 (3)	118 (5)	70 (3)	38 (2)	26 (8)	27 (5)	4 (4)
C(7)	403 (6)	3948 (4)	4521 (3)	172 (7)	59 (3)	42 (2)	20 (9)	-6 (7)	-24 (4)
C(8)	1294 (5)	4505 (3)	3625 (3)	159 (6)	54 (3)	42 (2)	-8(8)	-34 (7)	-5 (4)
C(9)	1232 (5)	4171 (3)	1803 (3)	126 (6)	44 (3)	42 (2)	2 (7)	-12(6)	-3 (4)
C(10)	2882 (5)	3634 (3)	1667 (3)	127 (6)	45 (3)	53 (2)	-23 (7)	8 (6)	10 (4)
C(11)	2944 (4)	2610 (3)	2078 (3)	111 (5)	39 (3)	41 (2)	-4 (6)	7 (5)	-10 (3)
C(12)	1629 (4)	2291 (3)	2588 (2)	92 (5)	33 (2)	42 (2)	6 (6)	-13 (5)	-16 (3)
C(13)	62 (4)	2840 (3)	2762 (2)	79 (4)	36 (2)	41 (2)	4 (5)	1 (5)	-6 (3)
C(14)	377 (4)	3946 (3)	2750 (2)	112 (5)	32 (3)	42 (2)	8 (6)	-25 (5)	-7 (3)
C(15)	-1179 (5)	2597 (3)	1971 (3)	120 (5)	39 (3)	54 (2)	-9(7)	-36 (6)	0 (4)
C(16)	-526 (6)	2948 (3)	1017 (3)	183 (7)	39 (3)	48 (2)	3 (8)	-56 (7)	-10(4)
N(17)	-5 (4)	3981 (3)	1049 (2)	158 (5)	54 (3)	36 (1)	0 (7)	-17(5)	2 (3)
$\mathrm{O}(18)$	209 (3)	1341 (2)	3648 (2)	115 (4)	39 (2)	55 (1)	2 (4)	27 (4)	8 (3)
$\mathrm{O}(30)$	2938 (4)	-86 (2)	3551 (2)	147 (4)	40 (2)	65 (2)	24 (5)	-37(5)	4 (3)
N(60)	-342 (5)	2483 (3)	5440 (2)	174 (6)	99 (4)	50 (2)	60 (8)	68 (6)	17 (4)
N(61)	373 (4)	1837 (3)	5856 (2)	137 (5)	69 (3)	43 (2)	-52 (7)	20 (5)	-3 (3)
N(62)	926 (6)	1230 (4)	6318 (3)	225 (7)	97 (4)	65 (2)	-45 (9)	-21(8)	54 (5)
C(170)	551 (7)	4322 (4)	118 (3)	251 (10)	72 (4)	45 (2)	5 (11)	2 (9)	-1 (5)

structure factors calculated from the final atomic parameters are given in Table 3. The atomic scattering factors for all the atoms were taken from International Tables for X-ray Crystallography (1962).

Table 2. Final fractional coordinates $\left(\times 10^{3}\right)$ and isotropic thermal parameters $\left(\AA^{2}\right)$ of hydrogen atoms

Estimated standard deviations are in parentheses.

	x	y	z	B
H(1)	526 (7)	210 (4)	176 (4)	$3 \cdot 3$
H(2)	518 (6)	68 (4)	248 (4)	$3 \cdot 1$
H(3)	189 (8)	-34 (4)	374 (4)	$4 \cdot 9$
H(5)	-158(6)	223 (4)	375 (3)	$2 \cdot 7$
H(6)	154 (6)	257 (3)	449 (3)	$2 \cdot 2$
H(71)	79 (7)	432 (4)	516 (4)	$4 \cdot 7$
H(72)	-75 (7)	421 (4)	448 (4)	$2 \cdot 7$
H(81)	131 (7)	512 (5)	351 (4)	$4 \cdot 3$
H(82)	252 (7)	394 (4)	365 (4)	$3 \cdot 5$
H(9)	147 (7)	497 (4)	174 (4)	$3 \cdot 1$
H(101)	378 (7)	400 (4)	194 (3)	$3 \cdot 2$
H(102)	313 (8)	369 (4)	96 (4)	$4 \cdot 2$
H(14)	-77 (6)	436 (3)	268 (3)	$2 \cdot 1$
H(151)	-215 (7)	299 (4)	218 (4)	$4 \cdot 3$
H(152)	-143 (7)	182 (4)	194 (3)	$0 \cdot 9$
H(161)	44 (8)	258 (4)	88 (5)	$4 \cdot 8$
H(162)	- 140 (8)	293 (4)	58 (4)	$4 \cdot 3$
H(171)	142 (7)	392 (4)	-13(3)	$3 \cdot 1$
H(172)	-44 (8)	434 (5)	- 22 (4)	$3 \cdot 5$
H(173)	89 (9)	513 (5)	21 (4)	$5 \cdot 5$

The geometry of the molecule

The atomic numbering and identification of the atoms is given in a schematic drawing of the molecule in Fig. 1. The molecule has a T-shaped conformation. The stock of the T is composed of the benzene (A), carbocyclic (B) and the five-membered oxide (E) rings, forming a plane $P 1$ with a maximum deviation of $0 \cdot 1 \AA$, if the atoms $C(5)$ and $C(14)$ (Table 4) are omitted from the plane. The two arms of the T are the carbocyclic (C) and the piperidine (D) rings, both in chair conformations and sharing the bond $\mathrm{C}(13)-\mathrm{C}(14)$.

The best planes of rings (C) and $(D)(P 2$ and $P 3$ in Table 4) are inclined to each other at an angle of 14.3° and to the plane $P 1$ at angles of 100.4° and 88.4°, respectively.

In the two chair rings C and D the dihedral angles belonging to the triatomic planes formed by each atom and its two neighbouring atoms are: $47.7,55 \cdot 5$, $52 \cdot 3,41 \cdot 6,33 \cdot 5,34 \cdot 9^{\circ}$ for the ring C and $54 \cdot 8,48 \cdot 5$, $49 \cdot 9,56 \cdot 8,61 \cdot 3,59 \cdot 1^{\circ}$ for the ring D if we start with atoms $\mathrm{C}(6)$ and $\mathrm{N}(17)$ of the rings C and D respectively and consider the atoms in a counterclockwise direction (see Fig. 1). The average values of the dihedral angles in rings C and D are 44.9° and $55 \cdot 1^{\circ}$, with maximum deviations of $11 \cdot 6^{\circ}$ and $6 \cdot 2^{\circ}$, respectively. Thus the C ring linked to the azido group is, compared with the ideal case with a dihedral angle of 60°, considerably more flattened and also much more distorted than the D ring. The greatest distortion is found at the $\mathrm{C}(5)-\mathrm{C}(13)$ bond, which is common to the oxide ring E.

Table 3. Observed and calculated structure factors ($\times 10$)
Unobserved reflexions are marked with an asterisk.

Fig. 1. Atomic numbering with bond lengths and angles for the molecule of azidomorphine.

Table 4. Least-squares planes of the molecule with normal distances to planes for atoms forming the planes and for some other atoms not forming the planes

The plane constants $(A x+B y+C z=D)$ are referied to crystal axes and coordinates are considered in \AA. . In parentheses are given the deviations from planes for the same atoms in the codeine molecule.

Plane	A	B	C	D
$P 1$	0.40724	0.43583	0.80263	4.91323
$P 2$	0.93669	-0.34439	-0.06328	-1.68233
$P 3$	0.82311	-0.54594	-0.15635	-2.95831
$P 4$	0.57591	0.68117	0.45203	5.63849

Plane	Atoms	Distances to plane (\AA)			
P1	[$\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$	$\begin{gathered} -0.0141 \\ (-0.0440) \end{gathered}$	$\begin{gathered} -0.0262 \\ (-0.0208) \end{gathered}$	$\begin{array}{r} -0.0156 \\ (0.0200) \end{array}$	$\begin{aligned} & -0.0421 \\ & (-0.0454) \\ & -0.0712 \\ & (-0.1586) \end{aligned}$
	$\mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(11), \mathrm{C}(12)$	$\begin{gathered} 0.0194 \\ (0.1831) \end{gathered}$	$\begin{gathered} 0.0996 \\ (0.0873) \end{gathered}$	$\begin{gathered} -0.0203 \\ (-0.0905) \end{gathered}$	
	$\mathrm{C}(13), \mathrm{O}(18), \mathrm{O}(30)$	$\begin{gathered} -0.0734 \\ (-0.1533) \end{gathered}$	$\begin{array}{r} -0.0927 \\ (0.1014) \end{array}$	$\begin{gathered} 0.0511 \\ (0.1208) \end{gathered}$	
-	$\mathrm{C}(5), \mathrm{C}(14)$	$\begin{gathered} 0.5560 \\ (0.3593) \end{gathered}$	$\begin{gathered} 0.6744 \\ (0.7740) \end{gathered}$		
P2	$\int \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(8)$	$\begin{gathered} -0.1172 \\ (-0.0882) \end{gathered}$	$\begin{gathered} 0 \cdot 2262 \\ (0.3046) \end{gathered}$	$\begin{gathered} -0.3155 \\ (-0.1960) \end{gathered}$	$\begin{gathered} 0.2843 \\ (-0.1393) \end{gathered}$
	$\mathrm{C}(13), \mathrm{C}(14)$	(0.0982	-0.1761		
-	$\mathrm{N}(60), \mathrm{N}(61), \mathrm{N}(62)$	(-0.2291) -0.2857	(0.3480) 0.5310	$1 \cdot 2004$	
P3	$\left\{\begin{array}{l}\mathrm{C}(9), \mathrm{C}(13), \mathrm{C}(14), \mathrm{C}(15) \\ \mathrm{C}(16), \mathrm{N}(17)\end{array}\right.$	$\begin{gathered} 0.2963 \\ (-0.3006) \\ 0.1875 \\ (-0.1927) \\ 0.0953 \\ (-0.0225) \end{gathered}$	$\begin{gathered} 0.2803 \\ (-0.2584) \\ -0.2339 \\ (0.2474) \end{gathered}$	$\begin{gathered} -0.3252 \\ (0.3088) \end{gathered}$	$\begin{gathered} -0.2050 \\ (0.1954) \end{gathered}$
-	$\mathrm{C}(170)$				
P4	f $\mathrm{C}(14), \mathrm{C}(6), \mathrm{N}(60), \mathrm{N}(61)$	0.1035	-0.0219	-0.0158	-0.0209
-	$\xrightarrow{\mathrm{N}(62)} \mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(13)$	-0.0449 -1.2793	1-1014	$1 \cdot 2818$	-1.2115

Table 5. Bond lengths with their estimated standard deviations in parentheses
For comparison the bond lengths of the non-hydrogen atoms in the codeine molecule are also given.

	Azidomorphine	Codeine		Azidomorphine	Codeine
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 380$ (6) \AA	$1.401 \AA$	$\mathrm{C}(7)-\mathrm{C}(8)$	1.542 (6) \AA	1.324 §
$\mathrm{C}(1)-\mathrm{C}(11)$	1.398 (6)	1.387	$\mathrm{C}(8)-\mathrm{C}(14)$	1.529 (5)	1.497
$\mathrm{C}(2)-\mathrm{C}(3)$	1.395 (6)	1.372	C(9)---C(14)	1.544 (5)	1.561
$\mathrm{C}(3)-\mathrm{C}(4)$	1.374 (6)	1.388	$\mathrm{C}(9)-\mathrm{N}(17)$	1.497 (5)	1.521
$\mathrm{C}(3)-\mathrm{O}(30)$	1.368 (5)	1.399	$\mathrm{C}(9)-\mathrm{C}(10)$	1.554 (6)	1.539
$\mathrm{C}(4)-\mathrm{C}(12)$	$1 \cdot 382$ (5)	1.369	$\mathrm{C}(10)-\mathrm{C}(11)$	1.510 (6)	1.496
$\mathrm{C}(4)-\mathrm{O}(18)$	1.400 (5)	$1 \cdot 370$	C(11)-C(12)	$1 \cdot 371$ (5)	1.399
$\mathrm{C}(5)-\mathrm{C}(6)$	1.527 (6)	1.516	$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 511$ (5)	1.504
C(5)--C(13)	1.543 (5)	1.532	$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 527$ (5)	1.564
$\mathrm{C}(5)-\mathrm{O}$ (18)	$1 \cdot 468$ (5)	1.472	C(13)-C(15)	1.550 (5)	1.535
$\mathrm{C}(6)-\mathrm{N}(60)$	1.483 (6)	-	$\mathrm{C}(15)-\mathrm{C}(16)$	1.529 (6)	1.530
$\mathrm{N}(60)-\mathrm{N}(61)$	$1 \cdot 210$ (5)	-	$\mathrm{C}(16)-\mathrm{N}(17)$	1.470 (6)	1.468
$\mathrm{N}(61)-\mathrm{N}(62)$	1.147 (6)	-	$\mathrm{N}(17)-\mathrm{C}(170)$	1.469 (6)	1.506
$\mathrm{C}(6)-\mathrm{C}(7)$	1.518 (7)	1.531			
$\mathrm{C}(1)-\mathrm{H}(1)$	$0 \cdot 94$ (6)		$\mathrm{C}(10)--\mathrm{H}(101)$	$0 \cdot 97$ (5)	
$\mathrm{C}(2)-\mathrm{H}(2)$	$0 \cdot 95$ (5)		$\mathrm{C}(10)-\mathrm{H}(102)$	1.02 (5)	
$\mathrm{O}(30)-\mathrm{H}(30)$	$0 \cdot 97$ (6)		$\mathrm{C}(14)-\mathrm{H}(14)$	$1 \cdot 10$ (5)	
$\mathrm{C}(5)-\mathrm{H}(5)$	0.98 (5)		$\mathrm{C}(15)-\mathrm{H}(151)$	1.00 (6)	
$\mathrm{C}(6)-\mathrm{H}(6)$	$0 \cdot 98$ (4)		C(15)--H(152)	1.08 (5)	
$\mathrm{C}(7)-\mathrm{H}(71)$	1.08 (6)		C(16)--H(161)	$0 \cdot 96$ (6)	
C (7)--H(72)	1.01 (6)		$\mathrm{C}(16)-\mathrm{H}(162)$	$0 \cdot 94$ (6)	
$\mathrm{C}(8)-\mathrm{H}(81)$	$1 \cdot 12$ (6)		$\mathrm{C}(170)-\mathrm{H}(171)$	$1 \cdot 12$ (6)	
$\mathrm{C}(8)-\mathrm{H}(82)$	$1 \cdot 12$ (5)		$\mathrm{C}(170)-\mathrm{H}(172)$	$1 \cdot 12$ (6)	
$\mathrm{C}(9)-\mathrm{H}(9)$	$1 \cdot 11$ (5)		$\mathrm{C}(170)-\mathrm{H}(173)$	$1 \cdot 11$ (6)	

The three N atoms of the azido group are coplanar with the $C(6)$ and $C(14)$ atoms with a maximum deviation of $0 \cdot 1 \AA$. This plane ($P 4$ in Table 4) is tilted to the best plane of the C ring ($P 2$ in Table 4) at an angle of $74 \cdot 0^{\circ}$.

The atoms $C(5)$ and $C(14)$ deviate from the plane
$P 1$ so that the inclination angles of planes [C(13), $\mathrm{C}(5), \mathrm{O}(18)]$ and $[\mathrm{C}(9), \mathrm{C}(14), \mathrm{C}(13)]$ with plane $P 1$ are $36 \cdot 9^{\circ}$ and $49 \cdot 8^{\circ}$, respectively.
The plane constants and normal atomic distances to the planes are given in Table 4. The bond lengths and bond angles are in Tables 5 and 6.

Table 6. Bond angles with their estimated standard deviations in parentheses
For comparison the corresponding angles of the codeine molecule are also given.

	Azidomorphine	Codeine		Azidomorphine	Codeine
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.1 (4) ${ }^{\circ}$	120.2°	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	112.9 (3) ${ }^{\circ}$	$108 .{ }^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	116.2 (4)	$118 \cdot 1$	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	106.4 (3)	$107 \cdot 8$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(30)$	$120 \cdot 4$ (4)	127.3	$\mathrm{C}(9)-\mathrm{N}(17)-\mathrm{C}(170)$	111.8 (3)	$113 \cdot 1$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(12)$	$121 \cdot 1$ (4)	$120 \cdot 8$	$\mathrm{C}(9)-\mathrm{N}(17)-\mathrm{C}(16)$	112.7 (3)	113.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(18)$	$127 \cdot 1$ (4)	127.0	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	114.6 (3)	$115 \cdot 4$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(30)$	$123 \cdot 3$ (4)	114.5	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	114.4 (3)	114.0
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(11)$	$123 \cdot 6$ (3)	$122 \cdot 7$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(17)$	$115 \cdot 2$ (3)	113.0
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(13)$	$109 \cdot 2$ (3)	109.4	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	117.9 (3)	118.6
$\mathrm{C}(4)-\mathrm{O}(18)-\mathrm{C}(5)$	$104 \cdot 4$ (3)	107.7	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(1)$	126.6 (4)	$125 \cdot 8$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(60)$	$109 \cdot 3$ (4)	112.5*	$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	121.4 (4)	$122 \cdot 5$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$113 \cdot 3$ (4)	$113 \cdot 8$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$127 \cdot 1$ (3)	$127 \cdot 3$
$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(12)$	$98 \cdot 1$ (3)	$101 \cdot 3$	$\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{O}(18)$	111.4 (3)	111.9
$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(15)$	111.8 (3)	112.4	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(1)$	$115 \cdot 4$ (3)	$115 \cdot 2$
$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	118.4 (3)	116.8	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	$109 \cdot 8$ (3)	$112 \cdot 2$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(18)$	$107 \cdot 0$ (3)	111.0	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	109.9 (3)	$105 \cdot 5$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$109 \cdot 5$ (4)	$119 \cdot 8$	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{O}(18)$	$105 \cdot 5$ (3)	$105 \cdot 1$
$\mathrm{C}(6)-\mathrm{N}(60)-\mathrm{N}(61)$	$115 \cdot 8$ (4)	-	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(16)$	$109 \cdot 8$ (3)	$112 \cdot 6$
$\mathrm{N}(60)-\mathrm{N}(61)-\mathrm{N}(62)$	173.0 (4)	111.	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{N}(17)$	$105 \cdot 8$ (3)	$105 \cdot 2$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(60)$	109.9 (4)	111.1*	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	108.3 (3)	108.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	$109 \cdot 2$ (3)	$120 \cdot 6$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(17)$	112.0 (3)	$110 \cdot 7$
$\mathrm{C}(8)--\mathrm{C}(14)-\mathrm{C}(9)$	114.4 (3)	112.5	$\mathrm{C}(16)-\mathrm{N}(17)-\mathrm{C}(170)$	111.4 (3)	$110 \cdot 4$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13)$	$112 \cdot 6$ (4)	112.9			

Fig. 2. Perspective view of the azidomorphine molecule, where the non-hydrogen atoms are represented by their thermal motion ellipsoids.

Thermal motion analysis

The r.m.s. amplitudes and the vectors of principal axes of the thermal vibration ellipsoids of the non-hydrogen atoms have been calculated and are listed in Table 7. The molecule with the atoms represented by their thermal motion ellipsoids can be seen in Fig. 2 [ORTEP plot (Johnson, 1965)].

Table 7. The principal axes of thermal vibration ellipsoids for atoms in the asymmetric unit

The axes are given by their lengths (\AA) and their vector components expressed as fractional coordinates ($\times 10^{3}$) referred to crystal axes with the origin at the site of the corresponding atom.

	i	$U_{t}(\AA)$	x	y	z
C(1)		$0 \cdot 247$	431	187	219
	2	$0 \cdot 190$	444	190	198
	3	$0 \cdot 188$	438	206	208
C(2)	1	$0 \cdot 275$	425	118	234
	2	$0 \cdot 209$	433	118	258
	3	$0 \cdot 179$	441	101	248
C(3)	1	$0 \cdot 240$	272	75	319
	2	$0 \cdot 194$	271	82	298
	3	$0 \cdot 178$	286	65	302
C(4)	1	$0 \cdot 210$	156	144	323
	2	$0 \cdot 204$	152	155	305
	3	$0 \cdot 183$	139	137	307
C(5)	1	$0 \cdot 229$	-46	231	356
	2	0.212	-50	222	376
	3	$0 \cdot 178$	-60	241	372
C(6)	1	$0 \cdot 261$	52	301	458
	2	0.212	60	278	466
	3	$0 \cdot 177$	58	282	447
C(7)	1	$0 \cdot 258$	60	408	445
	2	0.234	63	386	458
	3	$0 \cdot 188$	42	388	441
C(8)	1	$0 \cdot 246$	103	432	371
	2	$0 \cdot 227$	128	447	359
	3	$0 \cdot 191$	118	427	351
C(9)	1	0.217	106	413	191
	2	$0 \cdot 204$	112	430	179
	3	$0 \cdot 198$	109	412	170
C(10)	1	0.236	288	369	182
	2	$0 \cdot 222$	267	373	163
	3	0.187	274	353	170
C(11)	1	0.214	287	269	195
	2	$0 \cdot 193$	272	259	211
	3	$0 \cdot 183$	294	273	215
C(12)	1	0.217	156	222	272
	2	$0 \cdot 174$	143	231	256
	3	$0 \cdot 165$	162	218	253
C(13)	1	0.205	6	289	262
	2	$0 \cdot 181$	10	296	280
	3	$0 \cdot 165$	26	282	276
C(14)	1	0.221	54	398	263
	2	$0 \cdot 181$	55	393	282
	3	$0 \cdot 171$	38	382	272
C(15)	1	0.246	-132	261	212
	2	$0 \cdot 197$	-130	271	193
	3	0.183	-134	252	192
C(16)		0.272	-80	293	113
	2	$0 \cdot 202$	-64	304	93
	3	$0 \cdot 183$	- 59	284	94
N(17)	1	0.236	27	398	100
	2	0.224	1	415	106
	3	0.188	6	397	118

Table 7 (cont.)

	i	$U_{l}(\AA)$	x	y	z
$\mathrm{O}(18)$	1	$0 \cdot 244$	32	137	381
	2	$0 \cdot 192$	39	126	362
	3	$0 \cdot 187$	32	145	360
$\mathrm{O}(30)$	1	$0 \cdot 267$	309	-7	339
	2	$0 \cdot 221$	314	0	362
	3	$0 \cdot 182$	304	-20	358
$\mathrm{~N}(60)$	1	$0 \cdot 324$	-16	268	551
	2	$0 \cdot 253$	-15	238	554
	3	$0 \cdot 185$	-20	247	534
$\mathrm{~N}(61)$	1	$0 \cdot 271$	21	201	583
	2	$0 \cdot 214$	27	178	573
	3	$0 \cdot 189$	20	179	592
$\mathrm{~N}(62)$	1	$0 \cdot 336$	78	143	643
	2	$0 \cdot 268$	62	118	627
	3	$0 \cdot 222$	91	114	645
$\mathrm{C}(170)$	1	$0 \cdot 294$	91	434	12
	2	$0 \cdot 260$	57	413	12
	3	$0 \cdot 213$	55	432	-3

The thermal motion of the molecule has also been analysed as rigid-body vibration on the basis of Cruickshank's (1961b) procedure, using the program of Schomaker \& Trueblood (1968). By comparing U tensors of the individual atoms calculated from the rigid-body thermal motion ($U_{\text {catc }}$) with those derived from the structure analysis ($U_{\text {ohs }}$), a comparatively good agreement can be obtained if the two parts of the molecule, namely the stock and arms of the T-shape are separately assumed to be rigid bodies (Table 8). The translational and librational tensors of these parts assumed as rigid bodies are given in Table 9. In Table 10 the principal axes of the translational and librational tensor ellipsoids of the two assumed rigid bodies can be seen and can also be compared with the vibrational ellipsoids of the individual atoms (Table 7).

Discussion of the structure

The framework of the azidomorphine molecule, composed of five rings, has the same composition and T-conformation as morphine (Mackay \& Hodgkin, 1955) and codeine (Lindsey \& Barnes, 1955; Kartha, Ahmed \& Barnes, 1962). The left and right arms of the T-shape are formed in all three molecules by the piperidine ring D and carbocyclic ring C, respectively. The only significant deviation in the framework of azidomorphine compared with morphine and codeine can be found in the ring C. In azidomorphine it becomes saturated at the $\mathrm{C}(7)-\mathrm{C}(8)$ bond ($1.542 \AA$) and consequently ring C changes its conformation from boat to chair ($P 2$ in Table 4). This chair is rather flattened and distorted. The distortion is especially pronounced at the bond $C(5)-C(13)$ which is shared with the fivemembered oxide ring E, where the molecule is most probably strained.

The deviations of the atoms from the planes of the T-shape, given in Table 4, agree fairly well with the corresponding deviations in the codeine molecule if one disregards the C ring. Accordingly the dihedral
angles of ring D agree with the corresponding angles in codeine with deviations less than $3 \cdot 6^{\circ}$.

In azidomorphine the angles $\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(10)$, $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13), \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(18)$ and $\mathrm{C}(5)-\mathrm{C}(13)-$ $\mathrm{C}(12)$ show significant deviations from the normal values and exactly the same distortions can be found for the four corresponding angles in codeine (Table 6). These equal distortions may originate from the strain caused in both molecules by the five-membered oxide ring. This assumption is supported by the fact that no such distortions of the corresponding angles (118.5, $119 \cdot 3$) are present in D, L-cyclazocine (Karle, Gilardi, Fratini \& Karle, 1969), where the five-membered ring is absent.

The two $\mathrm{N}-\mathrm{N}$ bond lengths of the azido group ($1 \cdot 210$, $1 \cdot 147 \AA$) deviate only slightly from those found earlier in hydrogen azide $(1.24,1 \cdot 134 \AA)$ and methyl azide $(1 \cdot 24, \mathrm{I} \cdot 12 \AA)$. The latter values were determined by electron diffraction, microwave and infrared spectroscopy [Eyster, 1940 (IR); Schomaker \& Spurr, 1942 (ED); Amble \& Dailey, 1950 (MW + IR); Pauling \& Brockway, 1937 (ED)]. In determining the $\mathrm{N}-\mathrm{N}$ bonds of the N_{3} group of HN_{3} and $\mathrm{H}_{3} \mathrm{CN}_{3}$ the authors in both cases assumed that the N_{3} group is linear. For

Fig. 3. Packing of the molecule in the crystal lattice shown in orthogonal projection on the plane (100).

Table 8. Observed and calculated components of \mathbf{U} tensors of individual atoms referred to an orthogonalized axial system (in $10^{-2} \AA$)

Data are given for two groups of atoms forming in the molecule the stock and arms, respectively, of the T-shape, considered as two separate rigid bodies.

	U_{11}		U_{22}		U_{33}		U_{12}		U_{13}		U_{23}	
	obs	calc										
C(1)	$3 \cdot 68$	$3 \cdot 67$	$4 \cdot 15$	$4 \cdot 55$	$5 \cdot 43$	$5 \cdot 47$	-0.26	-0.01	0.38	0.56	-1.04	$1 \cdot 16$
$\mathrm{C}(2)$	$3 \cdot 48$	$3 \cdot 69$	5.09	$4 \cdot 26$	6.54	$6 \cdot 27$	$0 \cdot 64$	0.56	-0.13	-0.19	-1.54	$-1 \cdot 16$
C(3)	$4 \cdot 45$	3.93	$3 \cdot 27$	$3 \cdot 65$	$4 \cdot 95$	$5 \cdot 18$	$0 \cdot 10$	$0 \cdot 42$	-0.96	-0.79	-0.38	-0.45
C(4)	$3 \cdot 46$	$3 \cdot 52$	4.07	$3 \cdot 37$	$4 \cdot 39$	$4 \cdot 31$	-0.26	$0 \cdot 04$	-0.11	-0.33	0.01	-0.25
$\mathrm{C}(10)$	$4 \cdot 37$	$4 \cdot 52$	$4 \cdot 22$	$4 \cdot 28$	$5 \cdot 37$	$5 \cdot 37$	-0.66	-0.78	$0 \cdot 23$	0.31	0.48	0.23
C(11)	$3 \cdot 80$	$3 \cdot 52$	$3 \cdot 66$	$4 \cdot 87$	$4 \cdot 18$	$4 \cdot 25$	-0.12	-0.32	0.21	0.09	-0.50	-0.55
C(12)	$3 \cdot 15$	$3 \cdot 15$	$3 \cdot 12$	3.33	$4 \cdot 21$	4-19	$0 \cdot 17$	-0.11	-0.39	-0.25	-0.77	-0.33
$\mathrm{O}(18)$	$3 \cdot 93$	$4 \cdot 33$	$3 \cdot 62$	$3 \cdot 89$	$5 \cdot 58$	$5 \cdot 61$	0.06	-0.13	0.79	$0 \cdot 63$	$0 \cdot 40$	0.34
$\mathrm{C}(5)$	$3 \cdot 45$	$3 \cdot 16$	$4 \cdot 30$	$4 \cdot 42$	5.14	4.95	$0 \cdot 56$	0.50	0.25	$0 \cdot 40$	$0 \cdot 13$	$0 \cdot 50$
C(6)	$4 \cdot 05$	$4 \cdot 10$	$6 \cdot 56$	6.02	$3 \cdot 84$	4.07	0.72	$0 \cdot 81$	0.78	$0 \cdot 46$	0.22	0.33
C(7)	5.90	$6 \cdot 13$	$5 \cdot 50$	5.93	$4 \cdot 24$	$4 \cdot 09$	$0 \cdot 57$	0.71	-0.16	-0.02	-1.15	-0.95
C(8)	$5 \cdot 47$	$5 \cdot 23$	5.06	$4 \cdot 72$	$4 \cdot 29$	$4 \cdot 37$	-0.23	-0.49	-0.99	-0.82	-0.24	-0.70
C(9)	$4 \cdot 32$	$4 \cdot 34$	$4 \cdot 16$	$4 \cdot 22$	$4 \cdot 30$	$4 \cdot 23$	0.05	-0.33	-0.34	-0.41	-0.16	0.20
C(13)	2.72	$3 \cdot 06$	$3 \cdot 36$	$3 \cdot 41$	$4 \cdot 13$	$4 \cdot 23$	$0 \cdot 10$	$0 \cdot 40$	0.02	-0.11	-0.27	-0.22
C(14)	$3 \cdot 84$	$3 \cdot 65$	3.01	3.47	$4 \cdot 22$	$4 \cdot 09$	$0 \cdot 22$	$0 \cdot 15$	-0.74	-0.38	-0.36	-0.43
C(15)	$4 \cdot 13$	$4 \cdot 35$	$3 \cdot 70$	$3 \cdot 66$	$5 \cdot 48$	$5 \cdot 42$	-0.26	$0 \cdot 19$	-1.06	-1.16	-0.02	-0.33
C(16)	$6 \cdot 26$	$6 \cdot 16$	$3 \cdot 68$	$4 \cdot 24$	$4 \cdot 90$	$4 \cdot 54$	$0 \cdot 07$	$0 \cdot 11$	-1.65	-1.38	-0.50	-0.69
N(17)	$5 \cdot 41$	$5 \cdot 38$	$5 \cdot 02$	$4 \cdot 26$	$3 \cdot 68$	$4 \cdot 24$	0.01	$0 \cdot 13$	-0.51	-0.98	0.09	0.04

Table 9. Translational $\mathbf{T}\left(10^{-2} \AA^{2}\right)$ and librational $\omega\left(10^{-2} \mathrm{rad}^{2}\right)$ tensors of the two groups of atoms (as in Table 8), assumed as separate rigid bodies of the molecule, referred to an orthogonalized axial system

Table 10. Principal axes of the translational \mathbf{T} and librational ω tensors of the two group of atoms (as in Table 8), assumed as separate rigid bodies
The principal axes are given by their lengths (in \AA and radians respectively) and their unit vectors referred to an orthogonalized axial system.

Tensor	i	$\left(u^{2}\right)^{1 / 2}$	x	y	z
\mathbf{T}_{1}	1	$0.213(\AA)$	-0.186	-0.532	0.827
(stock)	2	0.181	-0.804	0.566	0.184
	3	0.172	-0.566	-0.630	-0.532
\mathbf{T}_{2}	1	0.206	0.269	0.460	-0.846
(arms)	2	0.184	0.436	0.725	0.533
	3	0.169	0.859	-0.512	-0.006
ω_{1}	1	$0.076(\mathrm{rad})$	0.280	0.956	-0.092
(stock)	2	0.054	0.960	-0.276	0.055
	3	0.039	0.027	-0.104	-0.994
ω_{2}	1	0.081	0.186	-0.563	0.806
(arms)	2	0.052	0.979	0.036	-0.201
	3	0.046	0.084	0.825	0.558

azidomorphine, however, this angle was found to be 173.0°.

It follows from the above that the framework common to the azidomorphine and codeine molecules is identical in both and the deviations are due only to alterations within the carbocyclic ring C caused by intramolecular forces. Thus the intermolecular forces, which must be somewhat different in the two crystal lattices, have no special effect on the conformation.

In the spatial packing each molecule is linked to two neighbouring molecules by $\mathrm{O}(30)-\mathrm{H}(3) \cdots \mathrm{N}(17)$ hydrogen bonds to form endless linear molecular chains parallel to the b crystal axis, as can be seen in Fig. 3. The hydrogen-bond distance $\mathrm{O}(30) \cdots \mathrm{N}(17)$ is $2.785 \AA$ with $\mathrm{O}(30)-\mathrm{H}(3)=0.968 \AA$ and $\mathrm{H}(3) \cdots \mathrm{N}(17)$ $=1.829 \AA$. The angle $\mathrm{O}(30)-\mathrm{H}(3)-\mathrm{N}(17)$ is $169 \cdot 1^{\circ}$. The linear molecular chains are held together by van der Waals forces. The shortest intermolecular H...H distances are listed in Table 11, together with the mean value compared with the sum of the van der Waals radii, which is given in parentheses.

Table 11. The shortest intermolecular $\mathrm{H} \cdots \mathrm{H}$ distances

The same endless linear molecular chains linked by $\mathrm{OH} \cdots \mathrm{N}$ hydrogen bonds can be found in $\mathrm{D}, \mathrm{L}-$ cyclazocine, with the same hydrogen-bond length ($2.79 \AA$). The bonds around the $\mathrm{N}(17)$ atom, included
in the hydrogen bond, as in D, L-cyclazocine, are directed according to the tetrahedral coordination. The angles $\mathrm{H}(3)-\mathrm{N}(17)-\mathrm{C}(X)$ with $X=170,9$ and 16 , not included in Table 6 , are $104 \cdot 5^{\circ}, 112 \cdot 1^{\circ}$ and $103 \cdot 8^{\circ}$, respectively.

Note:- Immediately after the completion of the present paper the structure of morphine hydrochloride trihydrate was published (Gylbert, 1973). In this molecule the five rings as well as their overall configuration compare very well with those in the morphine and codeine molecules, while maintaining the boat form in the carbocyclic C ring (D ring in Gylbert's paper). Based on Beckett \& Casy's (1954) conclusion, the boat form has been assumed by Gylbert to be due to the presence of the 4,5 -ether bridge. In azidomorphine, however, it was found that after saturation, the C ring changed its form from a boat to a chair, in spite of the presence of the 4,5 -ether bridge. Thus it does not seem that the boat form is caused directly by the 4,5 -ether bridge, but is most probably a consequence of the double bond in the C ring.

References

Albano, V., Domenicano, A. \& Vaciago, A. (1966). LeastSquares Refinement Program. Centro di Studio per la Strutturistica Chimica del C. N. R. Roma.
Amble, E. \& Dailey, B. P. (1950). J. Chem. Phys. 18, 14221422.

Beckett, A. H. \& Casy, A. F. (1954). J. Pharm. Pharmacol. 6, 986-1001.
Bognár, R., Makleit, S. \& Mile t. (1969). Acta Chim. Acad. Sci. Hung. 59, 379-385.
Cruickshank, D. W. J. (1961a). Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
Cruickshank, D. W. J. (1961b). Acta Cryst. 14, 896-897.
Domenicano, A. \& Vaciago, A. (1966). Threc-Dimensional Fourier Program. Centro di Studio per la Strutturistica Chimica del C.N.R. Roma.
Eyster, E. H. (1940). J. Chem. Phys. 8, 135-142.
Gylbert, L. (1973). Acta Cryst. B29, 1630-1635.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Karle, I. L., Gilardi, R. D., Fratini, A. V. \& Karle, J. (1969). Acta Cryst. B25, 1469-1479.

Kartha, G., Ahmed, F. R. \& Barnes, W. H. (1962). Acta Cryst. 15, 326-333.
Knoll, J., Fürst, Z. \& Kelemen, K. (1971). Orvostudomány, 22, 265-269.
Lindsey, J. M. \& Barnes, W. H. (1955). Acta Cryst. 8, 227232.

Mackay, M. \& Hodgkin, D. C. (1955). J. Chem. Soc. pp. 3261-3267.
Pauling, L. \& Brockway, L. O. (1937). J. Amer. Chem. Soc. 59, 13-20.
Schomaker, V. \& Spurr, R. A. (1942). J. Amer. Chem. Soc. 64, 1184-1187.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.

